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Abstract
Censored data with functional predictors often emerge in many fields such as biol-
ogy, neurosciences and so on. Many efforts on functional data analysis (FDA) have
been made by statisticians to effectively handle such data. Apart from mean-based
regression, quantile regression is also a frequently used technique to fit sample data.
To combine the strengths of quantile regression and classical FDA models and to
reveal the effect of the functional explanatory variable along with nonfunctional pre-
dictors on randomly censored responses, the focus of this paper is to investigate the
semi-functional partial linear quantile regression model for data with right censored
responses. An inverse-censoring-probability-weighted three-step estimation proce-
dure is proposed to estimate parametric coefficients and the nonparametric regression
operator in this model. Under some mild conditions, we also verify the asymptotic
normality of estimators of regression coefficients and the convergence rate of the pro-
posed estimator for the nonparametric component. A simulation study and a real data
analysis are carried out to illustrate the finite sample performances of the estimators.
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1 Introduction

Functional data analysis (FDA) has become an important and very broad research field
in modern statistics. More basic introductions and deep discussions on the FDA can be
referred to [30] for the methods and the case studies, and also [29] for the parametric
regression modeling, as well as [12] for the non-parametric FDA and its theoretical
and pratical studies. The latest developments of FDA can be found in themonograph of
[14] which provided not only the detailed descriptions of the testing algorithms and the
performance by means of simulations studies but also the asymptotic theory of FDA.
While [15] showed the theoretical foundations of FDAby introducing linear operators.
Furthermore, some advances in nonparametric or semi-parametric statistical methods
or models for FDA can be found in [1, 3, 25] among others.

Quantile regression (QR) is one of the most important statistical techniques which
was initially developed to measure the relationships between the response and the
explanatory variable besides mean-based regression methods, and has received con-
siderable attention since the seminal work of [22]. In the case of FDA, or when some of
explanatory variables are functional, some scholars have tried to combine the strengths
of quantile regression with FDA, and to study the relative theories and applications.

For example, [7] developed a conditional quantile method for FDA. Their main pur-
pose was to estimate conditional distribution function under a generalized functional
regression framework when the explanatory variable takes its values in a functional
space. [20] investigated the functional linear quantile regression model, and obtained
the optimal convergence rate for the proposed estimators under suitable norms in
a minimax sense. [27] considered the estimation of a functional partially quantile
regression model, and provided asymptotical normality of the proposed estimator of
the finite-dimensional parameter, and the convergence rate of the estimator of the
infinite-dimensional slope function. [35] presented an estimation method for the par-
tial functional linear quantile regression in the presence of both the functional and
the non-functional predictors, and established some asymptotic properties for the pro-
posed estimator under some mild conditions. [40] based on the partial least square
basis method and selected partial quantile regression basis via maximizing the partial
quantile covariance, which can make effective use of both information of covariates
and responses in estimation. [8] adopted the kernel-based three-stage procedure to
estimate the nonparametric regression operator and the partial linear coefficients in a
semi-functional partial linear quantile regression model. [41] considered the com-
posite quantile estimation for the partial functional linear regression model with
errors forming a short-range dependent and strictly stationary linear process, and
gave the large-sample properties of the proposed estimators and also displayed some
applications in electricity consumption data. In addition, [31] proposed a functional
single-index quantile regression model, where a generalized profiling method was
employed to estimate the model.

It should be noted that all the mentioned works involved above are in the case that
the samples are observed completely. However, in many practical occasions such as
sampling survey, survival analysis, pharmaceutical tracing test and reliability test and
so on, some pairs of observations may be incomplete such as missing responses at
random (see [11, 24, 39]), or the responses being randomly censored [6, 16], or even
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the explanatory variables being functional data with partial observations [23, 38]. But
it seems that the studies on functional quantile regressionwith incomplete observations
are not adequate enough, and the research results are relatively few. Inspired by all the
contributions above, in this paper, we focus on the estimations of the semi-functional
partial linear quantile regression model with responses being randomly censored, and
aim to establish some asymptotical properties of the proposed estimators.We also show
the effectiveness of the method through some simulations and a real data analysis. In
fact, our motivation comes from two aspects: one is from the real data analysis of
the Alzheimer’s Disease Neuroimaging Initiative(ADNI) database (https://adni.loni.
usc.edu) in the setting of FDA, where the individual survival time with Alzheimer’s
Diseases may be censored, and the other is that many examples of the response subject
to censorship and its related statistical inferences can be found in literature when all
the explanatory variables are of finite dimensionality, one can refer to [5, 9, 28, 37]
among others.

In what follows, for any quantile level τ ∈ (0, 1), we consider the semi-functional
partial linear quantile regression model as follows:

˜Y = ZTβτ + mτ (χ) + ετ , (1.1)

where ˜Y is the responses variable, Z = (Z1, ..., Z p)
T is a p-dimensional real-valued

explanatory vector and βτ = (β1τ , ..., βpτ )
T is an unknown p-dimensional coef-

ficients vector belonging to a compact subset of Rp, χ is a functional explanatory
variable that takes its value in a semi-metric space F with the associated semi-metric
denoted by d(·, ·), mτ (.) is an unspecified smooth functional operator from F to R,
ετ is a random error whose τ - th conditional quantile being zero given (Z,χ). In the
presence of randomly right censoring, the responses variable ˜Y can be only observed
as a pair of Y = min(˜Y ,C) and the censoring indicator � = I (˜Y ≤ C), where C is
the censoring variable and I (A) is an indicator function of a set A.

The rest of this paper is organized as follows. In Sect. 2, we propose the estima-
tion procedure for the unknown parameter vector βτ and the unknown regression
operator mτ (.) based on incomplete dataset following model (1.1). Section3 presents
some necessary regularity conditions and the main theoretical results of this paper. To
evaluate the finite-sample performances of the proposed estimators, some simulation
studies and a real data analysis are carried out in Sects. 4 and 5, respectively to show
the finite-sample performances of the proposed estimators. Then, some concluding
remarks and potential future works are given in Sect. 6. Finally, the technical proofs
of some lemmas and the main results are relegated to Sect. 7.

2 Methodology

Let {(Yi ,�i , Zi , χi ), i = 1, ..., n} be n i.i.d realizations of (Y ,�,Z,χ), and satisfy
model (2.1):

Ỹi = ZT
i βτ + mτ (χ i ) + εiτ , (2.1)
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where Yi = min{˜Yi ,Ci },�i = I (˜Yi ≤ Ci ), Zi = (Zi1, ..., Zip)
T and χi are observed

completely for i = 1, 2, ..., n. Throughout this paper, we assume that the censoring
variables {Ci }ni=1 are i.i.dwith commonunknown survival functionG(t) = P

(

C > t
)

,
and also independent of (˜Yi , Zi , χi ). Our initial goal is to construct the estimators of
the unknown parameters vector βτ and regression operator mτ (·) in model (2.1). Due
to the existence of random censorship, we exploit the inverse-censoring-probability-
weighted (ICPW) strategy and consider the following weighted objective function to
estimate the parameters or operator in model (2.1):

n
∑

i=1

�i

G(Yi )
ρτ

(

Yi − Z�
i βτ − mτ (χi )

)

, (2.2)

whereρτ (s) = s(τ − I (s < 0)) is a quantile loss function.Generally,G(·) is unknown
in practice, and is usually estimated with [18] (K-M) method that can be expressed as

̂Gn(u) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

n
∏

i=1

(

1 − 1 − �(i)

n − i + 1

)I[Y(i)≤u ] , if u < Y(n),

0, Otherwise,

(2.3)

where Y(1) ≤ Y(2) ≤ ... ≤ Y(n) are the order statistics of Yi , and �(i) is the indicator
variable corresponding to Y(i). Thus, substituting G(.) with ̂Gn = ̂Gn(.) into the loss
function (2.2) derives the objective function as follows:

Qn(βτ ,mτ (.), ̂Gn) =
n
∑

i=1

�i

̂Gn(Yi )
ρτ

(

Yi − Z�
i βτ − mτ (χi )

)

. (2.4)

At first glance, the estimators for (βτ ,mτ (.)) can be defined as the point of minima
of the weighted loss function (2.4). But such way will result in inefficient estimation
owing to mixture of linear and nonlinear components. In line with [4] and [8], we
develop the following three-step estimation procedure for the semi-functional partial
linear quantile regression model (2.1) in which responses may be randomly censored.

First, by minimizing the following local weighted quantile loss function, we obtain
an initial estimators ˜βτ and ãτ (χ) of βτ and mτ (χ), respectively, as following:

(˜βτ , ãτ (χ)) = arg min
βτ ,aτ (χ)

n
∑

i=1

�i

̂Gn(Yi )
ρτ

(

Yi − Z�
i βτ − aτ (χ)

)

Kh(d(χi , χ)),

(2.5)

where Kh(·) = K (·/h) and K (·) is a kernel function and h = hn > 0 is a bandwidth
with hn → 0 as n → ∞. Second, for an initial estimator ãτ (χ), we have the final
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estimator of βτ by minimizing the following quantile loss function:

̂βτ = argmin
βτ

n
∑

i=1

�i

̂Gn(Yi )
ρτ

(

Yi − Z�
i βτ − ãτ (χ)

)

. (2.6)

Since nonparametric and parametric components have different rates of convergence in
estimation, the second step will enhance the estimation efficiency regarding parameter
βτ compared to the initial estimators. Thirdly, with the ICPW estimate ̂βτ , the final
estimator of mτ (χ) is obtained by minimizing the following local weighted quantile
loss function:

âτ (χ) = arg min
aτ (χ)

n
∑

i=1

�i

̂Gn(Yi )
ρτ

(

Yi − Z�
i
̂βτ − aτ (χ)

)

Kh(d(χi , χ)). (2.7)

3 Theoretical Results

3.1 Notations and Assumptions

In this subsection, we first give some additional notations. Specifically, let B(χ, h) =
{y : d(y, χ) < h} denote an open ball with center χ and radius h, and SF be a com-
pact subset of F . Furthermore, Similar to [10], let Nε(SF ) be the minimal number of
open balls in F with centers χ1, ..., χNε (SF ) and radius ε to cover SF , and ψSF (ε) =
log(Nε(SF )) be the Kolmogrov’s ε- entropy of SF . The covering is called the ε− net
of SF . For convenience, let fτ (·|Z,χ) and Fτ (·|Z,χ) denote the conditional density
function and the conditional cumulative distribution function of the error ετ given
(Z,χ), respectively. Denoting Hτ (χ) =: E

{

fτ (0|Z,χ)(1,Z�)�(1,Z�)|χ = χ
}

,
Aτ (Z, χ) =: E { fτ (0|Z,χ)Z(1, 0�)|χ = χ

}

Hτ (χ)−1(1,Z�).

In what follows, in order to show the main results of this paper, we need to present
some assumptions. Throughout this paper, let c, c1, c2, ... be some positive constants
not depending on n which may take different values in each appearance.

(A1) There exist constants c1 > 0 and α > 0 such that for any u, v ∈ SF , |mτ (u) −
mτ (v)| ≤ c1d(u, v)α .

(A2) There exist constants c2 > 0 and c3 > 0 and a function φ(h) on (0,∞) such
that 0 < c2φ(h) ≤ P{χ ∈ B(χ, h)} ≤ c3φ(h) for any χ ∈ SF .

(A3) (i) K (·) is a bounded nonnegative function with support [0, 1] and satisfies a
Lipschitz condition on [0, 1). (ii) If K (1) = 0, K (·) satisfies an additional
assumption: its derivative K

′
(·) exists on [0, 1] with −∞ < c4 ≤ K

′
(u) ≤

c5 < 0 for c4 > 0 and c5 > 0.
(A4) (i) ∃ c5 > 0 and ∃ε0 > 0 such that ∀0 < ε < ε0, φ

′
(ε) < c5. (ii) If K (1) = 0,

then ∃c6 > 0 and ∃ε0 > 0 such that ∀0 < ε < ε0,
∫ ε

0 φ(u)du > c6εφ(ε).
(A5) Kolmogorov’s ε-entropy of SF satisfies:

(i)
log2 n

nφ(h)
< ψSF

(

log n

n

)

<
nφ(h)

log n
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and

(i i)
∞
∑

n=1

exp{(1 − v)ψSF (
log n

n
)} < ∞, f or some v > 1.

(A6) The scalar covariate Z is uniformly bounded and E[ fτ (0|Z,χ)ZZ�|χ = χ ] is
a finite and nondegenerate matrix.

(A7) fτ (.|Z,χ) is bounded away from zero and has a continuous and uniformly
bounded derivative.

(A8) There exists a maximum follow-up denoted by L and a constant ν0 > 0 such
that P{t ≤ ˜Y ≤ C} ≥ ν0 > 0 for any t ∈ [0, L].

(A9) Hτ (χ) is continuous and nonsingular on SF .

Comments on the assumptions: Assumptions (A1)–(A4) are quite usual conditions
in the context of nonparametric functional regression modeling, one can refer to [12]
for details. Assumption (A5) shows the topological considerations by restrictions on
Kolmogrov’s ε− entropy of SF , which had been adopted by [10] and [8] to get the
uniform convergence rates. Assumptions (A6),(A7) and (A9) are commonly used for
quantile regression model, see [8, 17] and [4]. Assumption (A8) is an usual condition
in survival analysis model with responses subject to random censorship, which had
been adopted by [33, 34] and [9] among others.

3.2 Main Results

In this subsection, we present the main results of this paper as follows.

Theorem 3.1 Under the assumptions (A1)–(A9), if in addition,
ψSF

(

log n

n

)

nφ2(h)
−→ 0

as n −→ ∞, then we have

√
n(̂βτ − βτ )

d−→ N (0, 
−1
1τ 
2τ


−1
1τ ), (3.1)

where �1τ = E
(

f (0|Z,χ)ZZ�), �2τ = E
[

((Z − Aτ (χ, z))r)⊗2
]

+ E

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

∫ L
0 (Z − Aτ (χ, z))r −

∑n
j=1

� j

G(Y j )

1

n
(I (Y j ≥ u)(Zj − Aτ (χj, zj)))rj

S(u)

⎞

⎟

⎟

⎠

⊗2

I (Y ≥ u)
λ(u)

G2(u)
du

⎤

⎥

⎥

⎦

with λ(u) = d�c(u)

du
and S(u) = P(˜Y ≥ u).Here�c(u) is the

cumulative hazard function of the censoring variable C , and the symbol a⊗2 denotes
the outer product of a vector a and itself, r = I (ετ ≤ 0)− τ and r j = I (ε jτ ≤ 0)− τ

for j = 1, 2, ..., n.
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Theorem 3.2 Under the assumptions (A1)-(A8), if in addition, nh2α −→ ∞, then we
have, as n −→ ∞,

sup
x∈SF

|m̂τ (χ) − mτ (χ)| = Op

⎛

⎜

⎜

⎜

⎝

hα +

√

√

√

√

√

ψSF

(

log n

n

)

nφ(h)

⎞

⎟

⎟

⎟

⎠

. (3.2)

Comments on the main results. The results extend that of [4] and [9] in the case of
non-functional explanatory variable to what the functional explanatory variable is
involved. Meanwhile, both Theorems 3.1 and 3.2 extend [8] to the case where the
responses are randomly censored.

4 Simulation Studies

This section is devoted to illustrating the finite sample performance of the proposed
methodology. For that purpose, let us consider the following model:

˜Yi = Z1iβ1τ + Z2iβ2τ + mτ (χi ) + εi (τ ), i = 1, 2, ..., n.

where {Z1i }ni=1 and {Z2i }ni=1 are independent with the standard normal distri-
bution N (0, 1). The functional data sets are generated by the curves χi (t) =
ai (t − 0.5)2 + bi (t ∈ [0, 1], i = 1, 2, ...n) which had also been adopted
by [2] as well as [8]. Here {ai }ni=1 and {bi }ni=1 are i.i.d. with uniform distri-
bution U (0, 1) and U (−0.5, 0.5), respectively. The simulated curves are shown
by Fig. 1. On the other hand, similar to [12], we choose the semi-metric which

is defined by d(χi , χ j ) =
√

∫ 1
0

(

χi (t) − χ j (t)
)2
dt, (i, j = 1, 2, ..., n), and the

kernel function K (u) = 3
4 (1 − u2)I[0,1](u). Meanwhile, the smoothing parame-

ter h is selected by the multiple experiments on the mean square loss criterion.
Denote m(χi ) = exp(−8 g(χi )) − exp(−12 g(χi )), where g(χi ) = sign(χ

′
i (1) −

χ
′
i (0))

√

3
∫ 1
0 (χ

′
i (t))

2dt with sign(x) = 1 if x > 0 and sign(x) = −1 if x < 0 as well

as sign(x) = 0 if x = 0 and εi (τ ) = εi − F−1(τ ) with F(.) being the common CDF
of εi for i = 1, 2, ...n. We take the coefficients of numerical covariates as β1τ = −1
and β2τ = 2 for quantile level τ , respectively, and then consider the two different
distribution for random error as follows:
Case (I): {εi }ni=1 is i.i.d. with normal distribution N (0, 0.25).
Case (II): {εi }ni=1 is i.i.d. with a Cauchy distribution for scale being 0.2.

Similar to [13], the censoring variables {Ci }ni=1 are generated by the uniform dis-
tribution U (0, c), where constant c controls the censoring proportion (CP).

In what follows, to evaluate the performance of the proposed method, we adopt the
following quantities: the average bias (Abias) and the standard deviation (SD) of the
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Fig. 1 The simulated sample curves {χi (t)}ni=1, t ∈ [0, 1].

estimators for the parametric components and the sample size n, which is defined as

Abias(̂βsτ ) = 1

N

N
∑

j=1

(

̂βsτ j − βsτ
)

and SD(̂βsτ ) =
⎧

⎨

⎩

1

N

N
∑

j=1

(̂βsτ j − βsτ )
2

⎫

⎬

⎭

1

2
,

for s = 1, 2, as well as the average bias (Abias) and the root of average squared errors
(RASE) of the estimators for the nonparametric components, which is also defined as

Abias(m̂) = 1

N

N
∑

j=1

{

1

n

n
∑

i=1

(

m̂τ j (χi ) − mτ j (χi )
)

}

and

RASE(m̂) = 1

N

N
∑

j=1

{

1

n

n
∑

i=1

[m̂τ j (χi ) − mτ j (χi )]2
}

1

2
,

where χi , (i = 1, 2, ..., n) are generated to evaluate the effectiveness of the model.
Based on N = 1000 simulation runs, we show the estimation results of the proposed

estimators for βτ andmτ (.)with quantile leavel τ = 0.25, 0.50, 0.75 and the different
CP of 20%, 30% and 50% as well as different sample sizes n = 100, 200, 300 under
Cases (I) and (II) inTables 1–4.These tables report the similar patterns, that is, averaged
biases of estimators are satisfactorily small, and estimation precision in terms of RASE
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Table 1 Abias and RASEs or SD (in parentheses) of m̂τ and ̂βsτ under different quantile level for error
distribution N (0, 0.25) with the CP of 20%

n τ m̂τ (χ) ̂β1τ ̂β2τ

100 0.25 0.0239(0.0057) −0.0019(0.0226) −0.0040(0.0262)

0.50 0.0081(0.0028) 0.0025(0.0205) −0.0037(0.0231)

0.75 0.0029(0.0007) 0.0029(0.0227) −0.0051(0.0257)

200 0.25 0.0237(0.0040) −0.0006(0.0155) 0.0012(0.0164)

0.50 0.0077(0.0019) 0.0001(0.0142) −0.0016(0.0158)

0.75 0.0026(0.0004) 0.0005(0.0151) −0.0020(0.0176)

300 0.25 0.0237(0.0032) 0.0009(0.0121) −0.0010(0.0134)

0.50 0.0077(0.0015) 0.0018(0.0113) −0.0022(0.0124)

0.75 0.0025(0.0002) 0.0012(0.0127) −0.0027(0.0143)

Table 2 Abias and RASEs or SD (in parentheses) of m̂τ and ̂βsτ under different quantile level for error
distribution N (0, 0.25) with the CP of 30%

n τ m̂τ (χ) ̂β1τ ̂β2τ

100 0.25 0.0240(0.0061) −0.0017(0.0226) 0.0053(0.0264)

0.50 0.0083(0.0031) 0.0026(0.0209) −0.0042(0.0232)

0.75 0.0030(0.0008) 0.0020(0.0226) −0.0046(0.0260)

200 0.25 0.0240(0.0041) −0.0003(0.0152) −0.0011(0.0180)

0.50 0.0079(0.0021) 0.0009(0.0140) −0.0034(0.0163)

0.75 0.0027(0.0004) 0.0014(0.0156) −0.0028(0.0182)

300 0.25 0.0240(0.0034) 0.0007(0.0120) −0.0019(0.0136)

0.50 0.0078(0.0016) 0.0021(0.0116) −0.0031(0.0129)

0.75 0.0026(0.0003) 0.0020(0.0126) −0.0033(0.0145)

of m̂τ (χ) and SD of ̂β1τ and ̂β2τ decreases as sample size n increases. By Tables 1–3,
we can find that as CP increases from 20% to 50%, Abias and SD of ̂β1τ and ̂β2τ as
well as Abias and RASE for m̂τ (χ) all get slightly worse, which is allowable because
of lack of complete information and less valid data used in estimations for data with
higher censoring rates. Estimation results under Case II and CP of 50% are reported
in Table 4, while results under same set-up with lower censoring rate has similar
tendency and thus can be omitted. Under Case II, the proposed estimators regarding
the nonparametric component achieves the better performances at τ = 0.75 in the
light of Abias and RASE.

On the other hand, in order to show the asymptotic normal of the parameter esti-
mators, the quantile-quantile (QQ) plots of the estimators are also shown in Fig. 2 and
Fig. 3, respectively under the different error distribution and a fixed CP such as 30%
for τ = 0.5. We can also find that the parameter estimators are asymptotically normal
distribution.
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Table 3 Abias and RASEs or SD (in parentheses) of m̂τ and ̂βsτ under different quantile level for error
distribution N (0, 0.25) with the CP of 50%

n τ m̂τ (χ) ̂β1τ ̂β2τ

100 0.25 0.0240(0.0087) −0.0057(0.0297) 0.0112(0.0332)

0.50 0.0096(0.0048) 0.0038(0.0234) −0.0072(0.0287)

0.75 0.0035(0.0016) 0.0040(0.0254) −0.0075(0.0331)

200 0.25 0.0251(0.0067) −0.0001(0.0189) 0.0006(0.0229)

0.50 0.0094(0.0036) 0.0048(0.0172) −0.0086(0.0218)

0.75 0.0031(0.0009) 0.0051(0.0195) −0.0109(0.0252)

300 0.25 0.0254(0.0055) 0.0014(0.0147) −0.0035(0.0181)

0.50 0.0091(0.00284) 0.0039(0.0136) −0.0077(0.0173)

0.75 0.0028(0.0005) 0.0041(0.0141) −0.0080(0.0190)

Table 4 Abias and RASEs or SD (in parentheses) of m̂τ and ̂βsτ under different quantile level for a Cauchy
error distribution (scale is 0.2) with the CP of 50%

n τ m̂τ (χ) ̂β1τ ̂β2τ

100 0.25 0.1412(0.1836) 0.0386(0.0819) −0.0810(0.1091)

0.50 0.0285(0.0189) 0.0200(0.0389) −0.0407(0.0510)

0.75 0.0082(0.0074) 0.0262(0.0494) −0.0458(0.0717)

200 0.25 0.0993(0.0532) 0.0311(0.0430) −0.0624(0.0575)

0.50 0.0255(0.0096) 0.0185(0.0235) −0.0353(0.0318)

0.75 0.0060(0.0037) 0.0235(0.0317) −0.0462(0.0460)

300 0.25 0.0950(0.0379) 0.0300(0.0335) −0.0598(0.0438)

0.50 0.0246(0.0075) 0.0161(0.0187) −0.0033(0.0263)

0.75 0.0055(0.0029) 0.0228(0.0254) −0.0447(0.0372)

5 A Real Data Analysis

In this section, we use a real data set to illustrate the proposed estimation procedures
for the model. The data set can be shown at the Alzheimer’s Disease Neuroimag-
ing Initiative(ADNI) database (https://adni.loni.usc.edu). The detailed data analysis,
including preprocessing of hippocampal image data and summary of demographic
information summary can be found in [19], which is also adopted by [32]. Here, we
also consider the clinical and imaging measures of 373 Mild Cognitive Impairment
(MCI) individuals in ADNI. Among the 373 MCI individuals, 161 MCI individuals
progressed to AD before the study completed, and the remaining 212MCI individuals
did not convert to AD prior to study end. Thus, the time of conversion from MCI to
AD can be treated as time-to-event data and the censoring proportion of the data set
is 57% (212/373).

Precisely, the scalar covariate that we choose includes gender (1=Male; 0=Female),
handedness (1=Right; 0=Left), marital status (1=married; 0=widowed, divorced or
never married), education length, retirement (1=Yes; 0=No), age, and the ADAS-Cog
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Fig. 2 QQ plots of the estimators ̂β1τ (left) and ̂β2τ (right) for error distribution N (0, 0.25) with τ = 0.50
and the CP of 30%

score. For the functional predictors, we use hippocampal radial distances of 30,000
surface points on the left and right hippocampus surfaces. The radial distance is defined
as the distance between the medial core of the hippocampus and the corresponding
vertex, and it is a summary statistic of the hippocampal shape and size. We consider
the following the semi-functional partial linear quantile regression model to fit the
data:

˜Yi = Genderi × βτ1 + Handednessi × βτ2 + MSi × βτ3

+ Educationi × βτ4 + Retirmenti × βτ5

+ Agei × βτ6 + ADASi × βτ7 + mτ (χi ) + ετ i ,

(5.1)

where˜Y is the log of the survival time and is randomly censored. Our aim is to estimate
themodel (5.1) between the scalar covariatesmentioned above aswell as the functional
covariates for the time ofMCI to AD transformation. Also, we choose the semi-metric
and the kernel function which is the same as that in the case of simulation studies.
The bandwidth involved in the kernel function are chosen by minimizing the cross-
validation criterion as Fig. 4 shows. The estimation results of the scalar covariance at
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Fig. 3 QQ plots of the estimators ̂β1τ (left) and ̂β2τ (right) for a Cauchy error distribution (scale is 0.2)
with τ = 0.50 and the CP of 30%

different quantile levels are reported in Table 5. By Table 5, It can be found that the
age covariate is always significant across all quantile levels, the ADAS-Cog score is
significant over low quantile levels, and marital status has important effects on the
time of conversion from MCI to AD over the middle range of quantile levels.

6 Conclusion

In this paper, we develop a new estimation procedure for the semi-functional partial
linear quantile regression model in the case of randomly censored responses. Then
some asymptotic properties of the estimators for the parameter coefficients and the
non-parameter regression operator of the model are obtained respectively under some
mild conditions. Both the simulation studies and the real data analysis shows that the
proposed procedure is effective for this model.

On the other hand, it will be of interest to consider an extension from an i.i.d.
sample to that of dependence such as functional time series data in the case of the ran-
domly censored responses which requires some nontrivial mathematics techniques.
Meanwhile, the variable selection for such estimating producer based on incomplete
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Fig. 4 Cross-validation errors with different bandwidths and quantile level at τ = 0.1, 0.2, ..., 0.9 under
the ADNI dataset

observation data may have more challenge which needs further investigation. Further-
more, just as one referee comments, the model investigated in this paper can be also
extended to the generalized semi-functional partial linear quantile regression model
with responses under random censorship. In addition, the censoring variable is condi-
tionally independent of the response variable given some covariates is also interesting.
All that goes beyond the scope of the present paper, andwill be our next work in future.

7 Proofs

In this section, we will give some lemmas and their proofs which is helpful to prove
the main results of this paper.
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Lemma 7.1 Under the assumptions (A1)− (A5) and (A8), for any random variables
Bi with |Bi | ≤ M < ∞,i = 1, 2, ...n, we have that

sup
χ∈SF

∣

∣

∣

∣

∣

1

nφ(h)]
n
∑

i=1

[

Kh (d (χi , χ))
�i Bi
G(Yi )

− EKh (χi , χ)
�i Bi
G(Yi )

]

∣

∣

∣

∣

∣

= Op

⎛

⎜

⎜

⎜

⎝

√

√

√

√

√

ψSF

(

log n

n

)

nφ (h)

⎞

⎟

⎟

⎟

⎠

. (7.1)

Proof For χ ∈ SF , let Ki (χ) = Kh(d(χ, χi )) (i = 1, ..., n). Based on the assump-
tions (A2)-(A4). if K (1) > 0 then by lemma 4.4 in [12]; or K (1) > 0 then by the
boundedness of kernel K (.), we have c1φ(h) ≤ E[K1(χ)] ≤ c2φ(h). Hence, in order
to complete the proof, let us write

gn(χ) = 1

nE[K1(χ)]
∑n

i=1 Kh(d(χi , χ))
�i Bi
G(Yi )

and k(χ) = argmink∈1,2,...,Nε(SF )

d(χ, χk), then it follows that:

sup
χ∈SF

|gn(χ) − Egn(χ)|

≤ sup
χ∈SF

|gn(χ) − gn(χk(χ))| + sup
χ∈SF

|gn(χk(χ)) − Egn(χk(χ))|

+ sup
χ∈SF

|Egn(χk(χ)) − Egn(χ)|

:= I1 + I2 + I3. (7.2)

Let us first treat the term I1.

I1 = sup
χ∈SF

∣

∣

∣

∣

∣

n
∑

i=1

1

nE[K1(χ)]Ki (χ)
�i Bi
G(Yi )

− 1

nE[K1(χk(χ))]Ki (χk(χ))
�i Bi
G(Yi )

∣

∣

∣

∣

∣

≤ sup
χ∈SF

C

nφ(h)

n
∑

i=1

|Ki (χ) − Ki (χk(χ))|IB(χ,h)∪B(χk(χ),h)(χi ). (7.3)

In the case of K (1) = 0 or K (1) > 0, similar to the proof of Lemma 8 in [10], by
choosing ε = n−1 log n, we get

I1 = Op

⎛

⎜
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. (7.4)
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Similarly,

I3 = Op
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In what follows, let us treat I2. Note that for all η > 0

P

(

I2 > η

√

ψSF (ε)

nφ (h)
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k∈{1,...,Nε(SF )}
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nφ (h)

)

.Writing�ki =:
1

E[K1(χk)]
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G(Yi )

Ki (χk) − E
( �i Bi
G(Yi )

Ki (χk)
)}

, then it follows that E |�ki |2 =
O(φ(h)−1) by the same proof procedure as that of (6.27) in [12]. Thus, similar to
the proof of F2 of Lemma 8 in [10], it follows that

I2 = Op
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Combining (7.4)–(7.6) leads to

sup
χ∈SF

|gn(χ) − Egn(χ)| = Op
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Hence,

sup
χ∈SF
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1

nφ (h)

n
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i=1

[

Kh (d (χi , χ))
�i Bi
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− EKh (χi , χ)
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]
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≤ C . sup
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, (7.8)

then, the proof of Lemma 7.1 is completed.
In what follows, let ri = I (εiτ ≤ 0) − τ , ri j = I (εiτ ≤ ζi j ) − τ , where ζi j =
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m∗
τ (χ j ) − m∗

τ (χi ). Denoting θ j = √
nφ(h)

(

ατ (χ j ) − m∗
τ (χ j ), (βτ − β∗

τ )�
)�

, ˜θ j =√
nφ(h)

(

ãτ (χ j ) − m∗
τ (χ j ), (˜βτ − β∗

τ )�
)�

,Z∗
i = (1,Z�

i

)�
,Z∗ = (1,Z�)� and

ηi j = Z∗�
i θj√
nφ(h)

. Furthermore, for convenience, we quote the following identity of [21]
in preparation for the latter technical proofs:

ρτ (x − y) − ρτ (x) = y{(I (x ≤ 0) − τ)} +
∫ y

0
[I (x ≤ t) − I (x ≤ 0)]dt . (7.9)

Lemma 7.2 Suppose that the assumptions (A1)-(A9)hold, then we have

˜θ j = −
{

E fτ (0|Z,χ)Kh(d(χ j , χ))Z∗Z∗�}−1
√

φ(h)

n
n
∑

i=1

�i

G(Yi )
Z∗
i ri j Kh(d(χi , χ j )) + op(1). (7.10)

Proof For χ ∈ SF , noticing that

˜Yi − Z�
i βτ − ατ (χj) = εiτ − ηij − ζij. (7.11)

Then, ˜θ j is also the minimizer of

l∗(θ j ) = 1

n

n
∑

i=1

�i

̂Gn(Yi )

{

ρτ (εiτ − ηi j − ζi j ) − ρτ (εiτ − ζi j )
}

Kh(d(χi , χ j )).

(7.12)

Similarly, let us denote

l(θ j ) = 1

n

n
∑

i=1

�i

G(Yi )

{

ρτ (εiτ − ηi j − ζi j ) − ρτ (εiτ − ζi j )
}

Kh(d(χi , χ j )). (7.13)

Thus, by the Taylor expansion [33], we have

√
n
( 1
̂Gn(Yi )

− 1

G(Yi )

) = 1

G(Yi )

1√
n

n
∑

j=1

∫ L

0
I (Yi ≥ t)

dMC
j (t)

y(t)
+ op(1), (7.14)

where y(t) = limn→∞(1/n)
∑n

i=1 I (Yi ≥ t) and MC
i (u) = (1 − δi )I (Yi ≤ u) −

∫ u
0 I (Yi ≥ s)d�C (s), respectively. Then, through the simple derivation, we can see
that

l∗(θ j ) − l(θ j )

= 1

n

n
∑

i=1

[

�i
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G(Yi )
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}
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= op(1) + 1

n
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where the second identity is derived by incorporating (7.14), the third equation is
derived by changing summation order, and the last equation is obatined from (7.9).
Applying Lemma 7.1, the integrand in (7.15) has
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(7.16)
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Under Assumption (A5) together with the compact set SF , combining (7.15) and
(7.16) yields

l∗(θ j ) − l(θ j )

= op(1) + 1

n

n
∑

j=1

∫ L

0

{

1

nφ(h)
θTj E

{

�i

G(Yi )
Kh(d(χi , χ j ))

I (Yi ≥ u)

y(u)
fτ (0|Zi , χi )Z

∗
i Z

∗T
i

}

θ j

}

dMC
j (u). (7.17)

Note that by assumptions (A1)-(A3) and (A6) and the properties of the conditional
expectation again, one can get

E

{

�i

G(Yi )
Kh(d(χi , χ j ))

I (Yi ≥ u)

y(u)
fτ (0|Zi , χi )Z

∗
i Z

∗T
i

}

= Op(1).

Thus, by the matingale central limit theorems, it then follows from (7.17) that

|l∗(θ j ) − l(θ j )| = op(1). (7.18)

Furthermore, by (7.9) and (7.13), we have

l(θ j ) = 1

n

n
∑

i=1

�i

G(Yi )

{

ρτ (εiτ − ηi j − ζi j ) − ρτ (εiτ − ζi j )
}

Kh(d(χi , χ j ))

:= 1

n

n
∑

i=1

�i

G(Yi )
ηi j ri j Kh(d(χi , χ j )) + 1

n
Rn(θ j ). (7.19)

Then, by (A1),(A7) and a simple arithmetic, It follows that

E(Rn(θ j )|Z,χ) =
n
∑

i=1

Kh(d(χi , χ j ))

∫ ηi j

0
(Fτ (ζi j + t |Z,χ) − Fτ (ζi j |Z,χ))dt

:= 1

2
θ�
j Q jθ j + Op(h

α), (7.20)

where Q j = ∑n
i=1

1

nφ(h)
fτ (0|Z,χ)Kh(d(χi , χ j ))Z∗

i Z
∗�
i . Hence, by [34], we also

have Var(Rn(θ j )|Z,χ) = op(1), which leads to

Rn(θ j ) = E(Rn(θ j )|Z,χ) + op(1). (7.21)
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On the other hand, by Lemma 7.1 and (7.20), we have

Q j = E(Q j ) + Op

⎛

⎜

⎜

⎜

⎝

√

√

√

√

√

ψSF

(

log n

n

)

nφ(h)

⎞

⎟

⎟

⎟

⎠

(7.22)

and

Rn(θ j ) = 1

2
θ�
j E(Q j )θ j + Op

⎛

⎜

⎜

⎜

⎝

hα +

√

√

√

√

√

ψSF

(

logn

n

)

nφ(h)

⎞

⎟

⎟

⎟

⎠

, (7.23)

respectively. Hence, by (7.19)–(7.23), it follows that

l(θ j ) = 1

n

n
∑

i=1

�i

G(Yi )
ηi j ri j Kh(d(χi , χ j ))

+ 1

2n
θ�
j

1

φ(h)
E

{

fτ (0|Z,χ)Kh(d(χi , χ j ))Z∗Z∗�}
θ j

+ Op

⎛

⎜

⎜

⎜

⎝

1

n

√

√

√

√

√

ψSF

(

log n

n

)

nφ(h)
+ hα

n

⎞

⎟

⎟

⎟

⎠

.

Then, following the ideas of Theorems 5.7 and 5.23 in Chapter 5 of [36], theminimizer
of l∗(θ j ) can be written as

˜θ j = −
{

1

φ(h)
E fτ (0|Z,χ)Kh(d(χ, χ j ))Z∗Z∗�

}−1

n
∑

i=1

�i

̂Gn(Yi )

Z∗
√
nφ(h)

ri j Kh(d(χi , χ j ))

+ Op

⎛

⎜

⎜

⎜

⎝

1

n

√

√

√

√

√

ψSF

(

log n

n

)

nφ(h)
+ hα

n

⎞

⎟

⎟

⎟

⎠

. (7.24)

Thus, the proof of Lemma 7.2 is completed.
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Proof of Theorem 3.1 Similar to [8], let us re-define ̂θ = √
n(̂βτ − β∗

τ ) and ζi =
ãτ (χi )−m∗

τ (χi ), respectively. Then,̂θ is also the minimizer of the following function:

l∗(θ) = 1

n

n
∑

i=1

�i

̂Gn(Yi )

{

ρτ

(

εiτ − ζi − Z�
i

θ√
n

)

− ρτ (εiτ − ζi )

}

= 1

n

n
∑

i=1

�i

G(Yi )

{

ρτ

(

εiτ − ζi − Z�
i

θ√
n

)

− ρτ (εiτ − ζi )

}

+ 1

n

n
∑

i=1

�i (G(Yi ) − ̂Gn(Yi ))
̂Gn(Yi )G(Yi )

[

ρτ

(

εiτ − ζi − Z�
i

θ√
n

)

− ρτ (εiτ − ζi )

]

:= 1

n
R1n(θ) + 1

n
R2n(θ). (7.25)

By (7.9), it follows that

R1n(θ) =
n
∑

i=1

�i

G(Yi )

Z�
i θ√
n
ri +

n
∑

i=1

�i

G(Yi )

∫ ζi+Z�
i θ/

√
n

ζi

[I (εiτ ≤ t) − I (εiτ ≤ 0)]dt

=:
n
∑

i=1

�i

G(Yi )

Z�
i θ√
n
ri + S1n(θ). (7.26)

Hence, by the conditional independencegivenZi , χi and the fact thatE
(

�i
G(Yi )

|Zi , χi

)

=
1 a.s, it follows that

E(S1n(θ))

=
n
∑

i=1

E

{

E

[

�i

G(Yi )

∫ ζi+Z�
i θ/

√
n

ζi

(

I (εiτ ≤ t) − I (εiτ ≤ 0)
)

dt |Zi , χi

]}

=
n
∑

i=1

E

∫ ζi+Z�
i θ/

√
n

ζi

(

Fτ (t |Z, χ) − Fτ (0|Z, χ)
)

dt

=
n
∑

i=1

1

2n
fτ (0|Z,χ) · θ�ZiZ�

i θ +
n
∑

i=1

Z�
i θ√
n

fτ (0|Z,χ)ζi + o(1). (7.27)

By Lemma 7.2, we have that

n
∑

i=1

Zi√
n
fτ (0|Z,χ)ζi

= − 1√
n

n
∑

i=1

fτ (0|Z,χ) · Zi (1, 0�)·

1

n

(

E{Kh(d(χi , χ))E[ fτ (0|Z,χ)Z∗Z∗�|χ ]}
)−1 ×

123



N. Ling et al.

n
∑

j=1

Z∗
j r j Kh(d(χi , χ j ))

� j

G(Y j )

+ Op

⎛

⎜

⎜

⎜

⎜

⎝

1

nφ(h)

√

√

√

√

√

ψSF

(

log n

n

)

n
+ hα

n
√

φ(h)

⎞

⎟

⎟

⎟

⎟

⎠

= − 1√
n

n
∑

j=1

� j

G(Y j )
r j Aτ (χ j , Z j ) + op(1). (7.28)

Performing similar calculations as those in (7.21), one can get S1n(θ) = E(S1n(θ)) +
op(1). Then, by (7.26)-(7.28), we have that

R1n(θ) = 1

2
θ�
(

n
∑

i=1

1

n
fτ (0|Z,χ)Zi Z

�
i

)

θ

+
{

n
∑

i=1

�i

G(Yi )
(Zi − Aτ (χi , zi ))

ri√
n

}�
θ + op(1) (7.29)

and

R2n(θ) =
n
∑

i=1

�i (G(Yi ) − ̂Gn(Yi ))
̂Gn(Yi )G(Yi )

[

ρτ (εiτ − ζi − Z�
i θ/

√
n) − ρτ (εiτ − ζi )

]

=
n
∑

i=1

(G(Yi ) − ̂Gn(Yi ))
̂Gn(Yi )

[

{

�i

G(Yi )
(Zi − Aτ (χi , zi ))

ri√
n

}�
θ

]

+ op(1),

(7.30)

respectively, where the last equality of (7.30) is derived from (7.14) and

∣

∣

∣

∣

∣

n
∑

i=1

(G(Yi ) − ̂Gn(Yi ))
̂Gn(Yi )

θ� 1

n
fτ (0|Z,χ)ZiZ�

i θ

∣

∣

∣

∣

∣

= 1

n

n
∑

j=1

∫ L

0
θ�
[

1

n

n
∑

i=1

I (Yi ≥ u) fτ (0|Z,χ)ZiZ�
i

]

θ/y(u)dMC
j (u) = op(1).

In what follows, we further denote

Tn = 1√
n

n
∑

i=1

�i

G(Yi )

[

1 + G(Yi ) − ̂Gn(Yi )
̂Gn(Yi )

]

(

Zi − Aτ (χi , Zi )
)

ri ,
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which leads to

l∗(θ) = 1

2
θ�
(

n
∑

i=1

1

n
fτ (0|Z,χ)ZiZ�

i

)

θ + T�
n θ + op(1). (7.31)

Similar to [8, 26] and [4], the minimizer of l∗(θ) is

̂θ = −
(

n
∑

i=1

1

n
f (0|Z,χ)ZiZ�

i

)−1

Tn + op(1). (7.32)

By (7.14) and the facts that

�i

G(Yi )
= 1 −

∫ L

0

dMC
i (u)

G(u)
,

we obtain

Tn = 1√
n

n
∑

i=1

[

(Zi − Aτ (χi , Zi ))ri −
∫ L

0

dMC
i (u)

G(u)
(Zi − Aτ (χi , Zi ))ri

]

+ 1√
n

n
∑

i=1

�i

G(Yi )

1

n

n
∑

j=1

∫ L

0
I (Yi ≥ u)(Zi − Aτ (χi , Zi ))ri

dMC
j (u)

y(u)
+ op(1).

Then it follows that

Tn = 1√
n

n
∑

i=1

[

(Zi − Aτ (χi , Zi ))ri −
∫ L

0
(Zi − Aτ (χi , Zi ))ri

−
∑n

j=1
� j

G(Y j )

1

n
(I (Y j ≥ u)(Z j − Aτ (χ j , Z j )))r j

S(u)

dMC
i (u)

G(u)

⎤

⎥

⎥

⎦

+ op(1), (7.33)

where S(u) = P(˜Y ≥ u). According to the martingale central limit theorem, we have

√
n
(

β̂τ − βτ

)

d→ N
(

0, 
−1
1τ 
2τ


−1
1τ

)

, (7.34)

where 
1τ = E
(

fτ (0|Z,χ)ZZ�) and


2τ = Var(Tn) = E

[

((Z − Aτ (χ, z))r)⊗2
]
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+ E

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎝

∫ τ

0
(Z − Aτ (χ, z))r −

∑n
j=1

� j

G(Y j )

1

n
(I (Y j ≥ u)(Z j − Aτ (χ j , z j )))r j

S(u)

⎞

⎟

⎟

⎠

⊗2

I (Y ≥ u)
λ(u)

G2(u)
du

]

.

��
Proof of Theorem 3.2 For χ ∈ SF , we also re-define ̂θ = √

nφ(h)(̂aτ (χ) − m∗
τ (χ))

and ζi = m∗
τ (χ) − m∗

τ (χi ) respectively. Similar to the decomposition of (7.11), we
have that

Yi − Z�
i
̂βτ − âτ (χ)

= εiτ − Zi (̂βτ − β∗
τ ) − (̂aτ (χ) − m∗

τ (χ)) − (m∗
τ (χ) − m∗

τ (χi ))

= εiτ − Z�
i (̂βτ − βτ ) − ζi − 1√

nφ(h)
̂θ. (7.35)

By the proof procedure of Lemma 7.2, let

l∗(̂θ) = 1

n

n
∑

i=1

�i

̂Gn(Yi )

{

ρτ

(

εiτ − Z�
i (̂βτ − βτ ) − ζi − ̂θ√

nφ(h)

)

−ρτ

(

εiτ − Z�
i (̂βτ − βτ ) − ζi

)}

Kh(d(χi , χ)) (7.36)

and

l(̂θ) = 1

n

n
∑

i=1

�i

G(Yi )

{

ρτ

(

εiτ − Z�
i (̂βτ − βτ ) − ζi − ̂θ√

nφ(h)

)

−ρτ

(

εiτ − Z�
i (̂βτ − βτ ) − ζi

)}

Kh(d(χi , χ)). (7.37)

Performing the same calculations as those of (7.15)–(7.17), we can also get |l∗(̂θ) −
l(̂θ)| = op(1)

In what follows, for simplicity, we denote si = I (εiτ − Zi (̂βτ −βτ )− ζi < 0)− τ .
By the Knight identity (7.9), l(̂θ) can be written as

l(̂θ) = 1

n

n
∑

i=1

�i

G(Yi )
Kh(d(χi , χ))

̂θ√
nφ(h)

· si

+
n
∑

i=1

�i

G(Yi )

∫

̂θ√
nφ(h)

0
[I (εiτ − Z�

i (̂βτ − βτ ) − ζi < t)

− I (εiτ − Z�
i (̂βτ − βτ ) − ζi < 0))dt]Kh(d(χi , χ))
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:=1

n
Wn̂θ + 1

n
Bn(̂θ). (7.38)

Similar to the proof procedure of (7.27), it follows that

E(Bn(̂θ)) =
n
∑

i=1

E

⎡

⎢

⎢

⎣

∫

̂θ√
nφ(h)

0
{I (εiτ − Z�

i (̂βτ − βτ ) − ζi < t)

−I (εiτ − Z�
i (̂βτ − βτ ) − ζi < 0)}dt · Kh(d(χi , χ))

⎤

⎥

⎥

⎦

= 1

2

n
∑

i=1

̂θ�

nφ(h)
fτ (0|Z,χ) · Kh(d(χi , χ))̂θ + o(1).

Next, let Q∗ = 1

φ(h)
E[Kh(d(χ , χ)) · E( fτ (0|Z,χ)|χ)]. Following the same proof

procedure as that of Lemma 7.2 and Theorem 3.1, we obtain

̂θ = −Q∗−1 · Wn + Op

⎛

⎜

⎜

⎜

⎝

1

n

√

√

√

√

√

ψSF

(

log n

n

)

nφ(h)
+ hα

n

⎞

⎟

⎟

⎟

⎠

. (7.39)

Furthermore, let us denote

W1n = 1

nφ(h)

n
∑

i=1

�i

G(Yi )
· Kh(d(χi , χ)) · ri ,

W2n = 1

nφ(h)

n
∑

i=1

�i

G(Yi )
Kh(d(χi , χ))(si − ri )

and Q1 = −E[ fτ (0|Z,χ)|χ = χ ]. Then, we obtain Q∗ = Op(1)Q1, which leads to

sup
χ∈SF

|̂aτ (χ) − mτ (χ)| = Op(1) sup
χ∈SF

∣

∣

∣Q−1
1 (W1n + W2n)

∣

∣

∣

+ Op

⎛

⎜

⎜

⎜

⎜

⎝

√

ψSF

(

log n

n

)

n2φ(h)
+ hα

n
√
nφ(h)

⎞

⎟

⎟

⎟

⎟

⎠

.
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To check the upper bound of |̂aτ (χ) − mτ (χ)| precisely, let us treat term W2n . By
Taylor’s expansion, it follows that

E(W2n|Z,χ) = E

{

1

nφ(h)

n
∑

i=1

�i

G(Yi )
Kh(d(χi , χ))(si − ri )|Z,χ

}

= Op(h
α) + Op

(

1√
n

)

+ op(h
α) = Op(h

α).

Similarly, we have Var(W2n|Z,χ) = op(hα). Thus, by Chebyschev’s inequality, it
follows that

W2n = Op(h
α).

Next, by Lemma 7.1, we obtain

sup
x∈SF

|W1n| = EW1n + Op

⎛

⎜

⎜

⎜

⎝

√

√

√

√

√

ψSF

(

log n

n

)

nφ(h)

⎞

⎟

⎟

⎟

⎠

= Op

⎛

⎜

⎜

⎜

⎝

√

√

√

√

√

ψSF

(

log n

n

)

nφ(h)

⎞

⎟

⎟

⎟

⎠

.

Finally, by assumption (A7), we obtain that

sup
χ∈SF

|̂aτ (χ) − mτ (χ)| = Op

⎛

⎜

⎜

⎜

⎜

⎝

hα +

√

√

√

√

√

ψSF

(

log n

n

)

nφ(h)
+

√

ψSF

(

log n

n

)

n2φ(h)
+ hα

n
√
nφ(h)

⎞

⎟

⎟

⎟

⎟

⎠

= Op

⎛

⎜

⎜

⎜

⎝

hα +

√

√

√

√

√

ψSF

(

log n

n

)

nφ(h)

⎞

⎟

⎟

⎟

⎠

.
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